Приложение на CRISPR-Cas9 технология за редактиране на грешки в човешкия геном

  • Боряна Захариева
  • Марта Михайлова
  • Анита Гюрова
  • Савина Хаджидекова
  • Драга Тончева
Keywords: CRISPR-Cas9, геномно редактиране, генетични болести и предразположения, персонализирана медицина

Abstract

Абревиатурата CRISPR произлиза от Clustered Regularly Interspaced Short Palindromic Repeats, което представлява отличителен белег на бактериалната защитна система. Тази бактериална система, лежи в основата на CRISPR-Cas9 технологията за редактиране на генома. Тя може да бъде програмирана да таргетира и модифицира специфични области в ДНК молекулата. Crispr-Cas9 е иновативна техника за извършване на корекции в ДНК, като се използва малка синтезирана РНК молекула, насочваща системата към точното дефектно място в генома. Този подход, предоставя възможност на изследователите да коригират гени в клетките на живите организми и в бъдеще, би могъл да се използва като средство за поправка на мутации в човешкия геном при лечение на генетични болести и предразположения. Технологията намира приложение в онкогенетиката, синтетичната биология и генната терапия и ще допринесе за развитие на персонализирана медицина.

References

Doudna JA, Charpentier E: Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096.
Liang P, Xu Y, Zhang X et al: CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell. 2015;6(5):363-72.
Kaminski R, Chen Y, Fischer T et al: Elimination of HIV-1 Genomes from Human T-lymphoid Cells by CRISPR/Cas9 Gene Editing. Sci Rep. 2016;6(22555.
Sternberg SH, Redding S, Jinek M et al: DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature. 2014;507(7490):62-7.
Hsu PD, Lander ES, Zhang F: Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157(6):1262-78.
Sternberg SH, LaFrance B, Kaplan M et al: Conformational control of DNA target cleavage by CRISPR-Cas9. Nature. 2015;527(7576):110-3.
Bhaya D, Davison M, Barrangou R: CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet. 2011;45(273-97.
Ran FA, Hsu PD, Wright J et al: Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8(11):2281-308.
Jinek M, Chylinski K, Fonfara I et al: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816-21.
White MK, Hu W, Khalili K: The CRISPR/Cas9 genome editing methodology as a weapon against human viruses. Discov Med. 2015;19(105):255-62.
Tang L, Zeng Y, Du H et al: CRISPR/Cas9-mediated gene editing in human zygotes using Cas9 protein. Mol Genet Genomics. 2017;292(3):525-33.
Bassuk AG, Zheng A, Li Y et al: Precision Medicine: Genetic Repair of Retinitis Pigmentosa in Patient-Derived Stem Cells. Sci Rep. 2016;6(19969.
Yin H, Xue W, Chen S et al: Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol. 2014;32(6):551-3.
Bengtsson NE, Hall JK, Odom GL et al: Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat Commun. 2017;8(14454.
Mendell JR, Rodino-Klapac LR: Duchenne muscular dystrophy: CRISPR/Cas9 treatment. Cell Res. 2016;26(5):513-4.
Nguyen TH, Anegon I: Successful correction of hemophilia by CRISPR/Cas9 genome editing in vivo: delivery vector and immune responses are the key to success. EMBO Mol Med. 2016;8(5):439-41.
Park CY, Kim DH, Son JS et al: Functional Correction of Large Factor VIII Gene Chromosomal Inversions in Hemophilia A Patient-Derived iPSCs Using CRISPR-Cas9. Cell Stem Cell. 2015;17(2):213-20.
Tasan I, Jain S, Zhao H: Use of genome-editing tools to treat sickle cell disease. Hum Genet. 2016;135(9):1011-28.
Kinzler KW, Vogelstein B: Cancer. A gene for neurofibromatosis 2. Nature. 1993;363(6429):495-6.
Tomasetti C, Vogelstein B: Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science. 2015;347(6217):78-81.
White MK, Pagano JS, Khalili K: Viruses and human cancers: a long road of discovery of molecular paradigms. Clin Microbiol Rev. 2014;27(3):463-81.
zur Hausen H: Perspectives of contemporary papillomavirus research. Vaccine. 2006;24 Suppl 3(S3/iii-iv.
Brown MT, Cooper JA: Regulation, substrates and functions of src. Biochim Biophys Acta. 1996;1287(2-3):121-49.
Lin SR, Yang HC, Kuo YT et al: The CRISPR/Cas9 System Facilitates Clearance of the Intrahepatic HBV Templates In Vivo. Mol Ther Nucleic Acids. 2014;3(e186.
Seeger C, Sohn JA: Targeting Hepatitis B Virus With CRISPR/Cas9. Mol Ther Nucleic Acids. 2014;3(e216.
Levine AJ: p53, the cellular gatekeeper for growth and division. Cell. 1997;88(3):323-31.
Kennedy EM, Kornepati AV, Goldstein M et al: Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells by using a bacterial CRISPR/Cas RNA-guided endonuclease. J Virol. 2014;88(20):11965-72.
Yao S, He Z, Chen C: CRISPR/Cas9-Mediated Genome Editing of Epigenetic Factors for Cancer Therapy. Hum Gene Ther. 2015;26(7):463-71.
Chessum N, Jones K, Pasqua E et al: Recent advances in cancer therapeutics. Prog Med Chem. 2015;54(1-63.
Herman JG, Baylin SB: Promoter-region hypermethylation and gene silencing in human cancer. Curr Top Microbiol Immunol. 2000;249(35-54.
Gnyszka A, Jastrzebski Z, Flis S: DNA methyltransferase inhibitors and their emerging role in epigenetic therapy of cancer. Anticancer Res. 2013;33(8):2989-96.
Seligson DB, Horvath S, Shi T et al: Global histone modification patterns predict risk of prostate cancer recurrence. Nature. 2005;435(7046):1262-6.
Juliano RL: The role of drug delivery systems in cancer chemotherapy. Prog Clin Biol Res. 1976;9(21-32.
Riordan JR, Deuchars K, Kartner N et al: Amplification of P-glycoprotein genes in multidrug-resistant mammalian cell lines. Nature. 1985;316(6031):817-9.
Cole SP, Bhardwaj G, Gerlach JH et al: Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science. 1992;258(5088):1650-4.
Wilson TR, Longley DB, Johnston PG: Chemoresistance in solid tumours. Ann Oncol. 2006;17 Suppl 10(x315-24.
Published
2017-06-15
How to Cite
1.
Захариева Б, Михайлова М, Гюрова А, Хаджидекова С, Тончева Д. Приложение на CRISPR-Cas9 технология за редактиране на грешки в човешкия геном. Редки болести и лекарства сираци [Internet]. 2017Jun.15 [cited 2020Oct.31];8(2):3-. Available from: http://journal.raredis.org/index.php/RBLS/article/view/26
Section
Статии

Most read articles by the same author(s)